Hyperbolic equilibrium point
(重定向自Hyperbolic fixed point)

In the study of dynamical systems, a hyperbolic equilibrium point or hyperbolic fixed point is a fixed point that does not have any center manifolds. Near a hyperbolic point the orbits of a two-dimensional, non-dissipative system resemble hyperbolas. This fails to hold in general. Strogatz notes that "hyperbolic is an unfortunate name – it sounds like it should mean 'saddle point' – but it has become standard." Several properties hold about a neighborhood of a hyperbolic point, notably