Stomatal conductance
By definition, stomatal conductance, usually measured in mmol m⁻² s⁻¹, is the measure of the rate of passage of carbon dioxide (CO2) entering, or water vapor exiting through the stomata of a leaf. Stomata are small pores on the top and bottom of a leaf that are responsible for taking in and expelling CO2 and moisture from and to the outside air. The rate of stomatal conductance, or its inverse, stomatal resistance, is directly related to the boundary layer resistance of the leaf and the absolute concentration gradient of water vapor from the leaf to the atmosphere. It is under direct biological control of the leaf through the use of guard cells, which surround the stomatal pore (Taiz/Zeiger 1991). The turgor pressure and osmotic potential of guard cells is directly related to the stomatal conductance. Stomatal conductance is a function of stomatal density, stomatal aperture, and stomatal size. Stomatal conductance is integral to leaf level calculations of transpiration (E). Multiple studies have shown a direct correlation between the use of herbicides and changes in physiological and biochemical growth processes in plants, particularly non-target plants, resulting in a reduction in stomatal conductance and turgor pressure in leaves.