全实域 Totally real number field
(重定向自Totally real field)
在代数数论中,若数域 的每个嵌入
的像都落在实数域
,则称
为全实域或全实数域。
若 可表为
,设
在
上的的极小多项式为
,则嵌入映射
透过
一一对应于
在
里的根。
是全实域若且唯若
仅有实根。
另一种判准是: 是全实域若且唯若
。
全实域在代数数论中是较容易处理的数域。对于任意的阿贝尔扩张 ,或者
是全实域,或者存在极大的全实子域
使得
。