环的局部化 Localization of a ring
在抽象代数中,局部化是一种在环中形式地添加某些元素的倒数,借以建构分式的技术;由此可透过张量积构造模的局部化。范畴的局部化过程类似,但此时加入的是态射之逆元素,以使得这些态射在局部化以后变为同构。
局部化在环论与代数几何中占有根本地位,范畴的局部化则引出导范畴的概念,在高等数学中有众多应用。
单词 | Ring of quotients |
释义 |
Ring of quotients
中文百科
环的局部化 Localization of a ring(重定向自Ring of quotients)
在抽象代数中,局部化是一种在环中形式地添加某些元素的倒数,借以建构分式的技术;由此可透过张量积构造模的局部化。范畴的局部化过程类似,但此时加入的是态射之逆元素,以使得这些态射在局部化以后变为同构。 局部化在环论与代数几何中占有根本地位,范畴的局部化则引出导范畴的概念,在高等数学中有众多应用。
英语百科
Localization of a ring 环的局部化(重定向自Ring of quotients)
In abstract algebra, localization is a systematic method of adding multiplicative inverses to a ring. Given a ring R and a subset S, one wants to construct some ring R* and ring homomorphism from R to R*, such that the image of S consists of units (invertible elements) in R*. Further one wants R* to be the 'best possible' or 'most general' way to do this – in the usual fashion this should be expressed by a universal property. The localization of R by S is usually denoted by SR; however other notations are used in some important special cases. If S is the set of the non zero elements of an integral domain, then the localization is the field of fractions and thus usually denoted Frac(R). If S is the complement of a prime ideal I the localization is denoted by RI, and Rf is used to denote the localization by the powers of an element f. The two latter cases are fundamental in algebraic geometry and scheme theory. In particular the definition of an affine scheme is based on the properties of these two kinds of localizations. |
随便看 |
|
英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。