非奇异方阵 Invertible matrix
(重定向自Reciprocal matrix)
若方块矩阵满足条件
,则称
为非奇异方阵,否则称为奇异方阵。
阶方阵
是非奇异方阵的充要条件是
可逆,即可逆方阵就是非奇异方阵。
对一个阶方阵
,如果存在一个
阶方阵
使
(
是单位矩阵),则称
是可逆的,也称
为非奇异矩阵。
是
的逆阵。
给定一个阶方阵
,则下面的叙述都是等价的:
单词 | Reciprocal matrix |
释义 |
Reciprocal matrix
中文百科
非奇异方阵 Invertible matrix(重定向自Reciprocal matrix)
若方块矩阵
对一个 给定一个
英语百科
Invertible matrix 非奇异方阵(重定向自Reciprocal matrix)
In linear algebra, an n-by-n square matrix A is called invertible (also nonsingular or nondegenerate) if there exists an n-by-n square matrix B such that where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A and is called the inverse of A, denoted by A. |
随便看 |
|
英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。