二次互反律

在数论中,特别是在同余理论里,二次互反律(Law of Quadratic Reciprocity)是一个用于判别二次剩余,即二次同余方程之整数解的存在性的定律。二次互反律揭示了方程
可解和
可解的简单关系。运用二次互反律可以将模数较大的二次剩余判别问题转为模数较小的判别问题,并最后归结为较少的几个情况,从而在实际上解决了二次剩余的判别问题。然而,二次互反律只能提供二次剩余的存在性,对于二次同余方程的具体求解并没有实际帮助。
二次互反律常用勒让德符号表述:对于两个奇素数 和
,
其中是勒让德符号。但是对于更一般的雅可比符号和希尔伯特符号也有对应的二次互反律。