霍普夫纤维化 Hopf fibration
在拓扑学中,霍普夫纤维化(Hopf fibration,亦称霍普夫纤维丛)是最早提出的纤维化,其中的纤维是圆圈(1-球面,S),基空间是三维空间中的球面(2-球面,S),而全空间是四维空间中的超球面(3-球面,S)。容易验证,它是非平凡的。即全空间S与积空间S×S不是拓扑同构的。
单词 | Hopf bundle |
释义 |
Hopf bundle
中文百科
霍普夫纤维化 Hopf fibration(重定向自Hopf bundle)
在拓扑学中,霍普夫纤维化(Hopf fibration,亦称霍普夫纤维丛)是最早提出的纤维化,其中的纤维是圆圈(1-球面,S),基空间是三维空间中的球面(2-球面,S),而全空间是四维空间中的超球面(3-球面,S)。容易验证,它是非平凡的。即全空间S与积空间S×S不是拓扑同构的。
英语百科
Hopf fibration 霍普夫纤维化(重定向自Hopf bundle)
![]() ![]() ![]() In the mathematical field of topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3-sphere (a hypersphere in four-dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it is an influential early example of a fiber bundle. Technically, Hopf found a many-to-one continuous function (or "map") from the 3-sphere onto the 2-sphere such that each distinct point of the 2-sphere comes from a distinct circle of the 3-sphere (Hopf 1931). Thus the 3-sphere is composed of fibers, where each fiber is a circle — one for each point of the 2-sphere. |
随便看 |
|
英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。