Hidden oscillation


An oscillation in a dynamical system can be easily localized numerically if initial conditions from its open neighborhood lead to long-run behavior that approaches the oscillation. Such an oscillation (or set of oscillations) is called an attractor, and its attracting set is called the basin of attraction. Thus, from a computational point of view the following classification of attractors based on the simplicity of finding basin of attraction in the phase space is suggested: an attractor is called a hidden attractor if its basin of attraction does not intersect with small neighborhoods of equilibria, otherwise it is called a self-excited attractor.