Hankel变换
汉克尔变换是指对任何给定函数 以第一类贝塞尔函数
作无穷级数展开,贝塞尔函数
的阶数不变,级数各项
作变化。各项
前系数
构成了变换函数。对于函数
, 其
阶贝塞尔函数的汉克尔变换(
为自变量)为
其中, 为阶数为
的第一类贝塞尔函数,
。对应的,逆汉克尔变换
定义为
汉克尔变换是一种积分变换,最早由德国数学家 Hermann Hankel 提出,又被称为傅立叶-贝塞尔变换。
单词 | Hankel transform |
释义 |
Hankel transform
中文百科
Hankel变换汉克尔变换是指对任何给定函数 其中, 汉克尔变换是一种积分变换,最早由德国数学家 Hermann Hankel 提出,又被称为傅立叶-贝塞尔变换。
英语百科
Hankel transform Hankel变换In mathematics, the Hankel transform expresses any given function f(r) as the weighted sum of an infinite number of Bessel functions of the first kind Jν(kr). The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor k along the r-axis. The necessary coefficient Fν of each Bessel function in the sum, as a function of the scaling factor k constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval. |
随便看 |
|
英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。