集合代数
集合代数发展并描述了集合的基本性质和规律,集合论运算,如并集、交集、补集,以及集合的关系,如等于、包含。这门学科系统研究如何来表达和进行上述的运算和关系的操作。
集合代数是研究集合运算和集合关系的基本性质的学科。研究这些性质可以深入探究集合的本质,也有助于实际应用。
像普通算术的表达和计算一样,集合的表达和计算可能相当复杂。通过系统研究将有助于熟练使用和理解这些表达方式并进行计算。
在算术研究方面,是通过初等代数来研究算术的运算和关系的。
例如:加法和乘法运算遵循人们熟知的交换律、结合律和分配律;而"小于等于"关系满足自反性、反对称性和传递性。 这些规律提供了简化计算的工具,并描述了算术的本质、运算和关系。