代数数域
代数数域是数学中代数数论的基本概念,数域的一类,有时也被简称为数域,指有理数域的有限扩张形成的扩域。任何代数数域都可以视作
上的有限维矢量空间。
对代数数域的研究,或者更一般地说,对有理数域的代数扩张的研究,是代数数论的中心主题。
单词 | Algebraic number field |
释义 |
Algebraic number field
中文百科
代数数域代数数域是数学中代数数论的基本概念,数域的一类,有时也被简称为数域,指有理数域 对代数数域的研究,或者更一般地说,对有理数域的代数扩张的研究,是代数数论的中心主题。
英语百科
Algebraic number field 代数数域![]() In mathematics, an algebraic number field (or simply number field) F is a finite degree (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector space over Q. |
随便看 |
|
英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。