Dieudonné determinant
In linear algebra, the Dieudonné determinant is a generalization of the determinant of a matrix to matrices over division rings and local rings. It was introduced by Dieudonné (1943).
If K is a division ring, then the Dieudonné determinant is a homomorphism of groups from the group GLn(K) of invertible n by n matrices over K onto the abelianization K/[K, K] of the multiplicative group K of K.