审敛法
在数学领域, 收敛性判别法是判断无穷级数收敛, 条件收敛, 绝对收敛, 区间收敛或发散的方法.
如果 r < 1, 那幺级数绝对收敛. 如果 r > 1, 那幺级数发散. 如果 r = 1, 比例判别法失效, 级数可能收敛也可能发散.
其中 "lim sup" 表示上极限 (可能为无穷; 如果极限存在,极限值等于上极限).
如果 r < 1, 级数绝对收敛. 如果 r > 1, 级数发散. 如果 r = 1, 开方判别法无效, 级数可能收敛也可能发散.
那幺级数收敛. 如果积分发散, 那幺级数也发散.

![Illustration of the absolute convergence of the power series of Exp[z] around 0 evaluated at z = Exp[i⁄3]. The length of the line is finite.](/uploads/202501/06/ExpConvergence0829.gif)

, the nth partial sum
is the sum of the first n terms of the sequence, that is,
tends to a limit; that means that the partial sums become closer and closer to a given number when the number of their terms increases. More precisely, a series converges, if there exists a number
such that for any arbitrarily small positive number
, there is a (sufficiently large) integer
such that for all
,