网站首页  英汉词典

请输入您要查询的英文单词:

 

单词 Column space
释义

Column space

原声例句
Linear algebra

In other words, the column space is the span of the columns of your matrix.

换句话说 列空间就是矩阵的列张成的空间。

Linear algebra

Notice, the zero vector will always be included in the column space.

注意 零向量总是包含在列空间中。

Linear algebra

The idea of column space lets us understand when a solution even exists.

列空间的概念让我们理解解何时存在。

Linear algebra

So a more precise definition of rank would be that it's the number of dimensions in the column space.

所以秩的一个更精确的定义是它是列空间中的维数。

Linear algebra

This video is No Exception, describing the concepts of inverse matrices, column space, rank and, uh no, space through that lens.

这个视频是《无一例外》,描述了逆矩阵,列空间,秩,还有,不,通过这个镜头的空间。

Linear algebra

This set of all the possible outputs for your matrix, whether it's a line, a plain 3D space, whatever, is called the column space of your matrix.

这个矩阵的所有可能输出的集合 无论是一条直线 一个普通的三维空间 无论什么 都被称为矩阵的列空间。

Linear algebra

But the matrix is still full rank, since the number of dimensions in this column space is the same as the number of dimensions of the input space.

但是这个矩阵仍然是满秩的 因为这个列空间的维数和输入空间的维数是一样的。

Linear algebra

In the language of last video, the column space of this matrix, the place where all the vectors land, is a two D plane slicing through the origin of three D space.

用上个视频的语言来说 这个矩阵的列空间 所有向量的落点 是一个二维平面 穿过三维空间的原点。

Linear algebra

It's that you come away with a strong intuition for inverse matrices, column space and no space, and that those intuitions make any future learning that you do more fruitful.

你会对逆矩阵 列空间和无空间有很强的直觉 这些直觉会让你以后的学习更有成效。

中文百科

行空间与列空间 Row and column spaces

(重定向自Column space)

有实数元素的m × n 矩阵的行空间R的由这个矩阵的行矢量生成的子空间。它的维度等于矩阵的秩,最大为min(m,n)。

有实数元素的m × n 矩阵的列空间R的由这个矩阵的列矢量生成的子空间。它的维度等于矩阵的秩,最大为min(m,n)。

如果把矩阵当作从RR的线性变换,则矩阵的列空间等于这个线性变换的像。

矩阵A的列矢量是所有A的纵列的线性组合。如果A = [a1, ...., an],则Col A = Span {a1, ...., an}。

行空间的概念推广到了在任何域上的矩阵,特别是复数域C

英语百科

Row and column spaces 行空间与列空间

(重定向自Column space)
The row vectors of a matrix. The row space of this matrix is the vector space generated by linear combinations of the row vectors.
The column vectors of a matrix. The column space of this matrix is the vector space generated by linear combinations of the column vectors.

In linear algebra, the row space of a matrix is the set of all possible linear combinations of its row vectors.  Let K be a field (such as real or complex numbers). The row space of an m × n matrix with components from K is a linear subspace of the n-space Kn. The dimension of the row space is called the row rank of the matrix.[1]

A definition for matrices over a ring K (such as integers) is also possible.[2]

vector space generated by linear combinations of the column vectors.

In linear algebra, the column space C(A) of a matrix A (sometimes called the range of a matrix) is the span (set of all possible linear combinations) of its column vectors.

Let K be a field (such as real or complex numbers). The column space of an m×n matrix with components from K is a linear subspace of the m-space K. The dimension of the column space is called the rank of the matrix. A definition for matrices over a ring K (such as integers) is also possible.

随便看

 

英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2024 encnc.com All Rights Reserved
更新时间:2025/6/17 20:52:05