网站首页  英汉词典

请输入您要查询的英文单词:

 

单词 Cauchy Riemann equations
释义

Cauchy Riemann equations

中文百科

柯西-黎曼方程 Cauchy–Riemann equations

(重定向自Cauchy Riemann equations)

复分析中的柯西-黎曼微分方程是提供了可微函数在开集中为全纯函数的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。

在一对实值函数u(x,y)和v(x,y)上的柯西-黎曼方程组包括两个方程:

通常,uv取为一个复函数的实部和虚部:f(x + iy) = u(x,y) + iv(x,y)。假设uv在开集C上连续可微。则f=u+iv是全纯的,当且仅当uv的偏微分满足柯西-黎曼方程组(1a)和(1b)。

英语百科

Cauchy–Riemann equations 柯西-黎曼方程

(重定向自Cauchy Riemann equations)
Contour plot of a pair u and v satisfying the Cauchy–Riemann equations.  Streamlines (v = const, red) are perpendicular to equipotentials (u = const, blue).  The point (0,0) is a stationary point of the potential flow, with six streamlines meeting, and six equipotentials also meeting and bisecting the angles formed by the streamlines.

In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which, together with certain continuity and differentiability criteria, form a necessary and sufficient condition for a complex function to be complex differentiable, that is holomorphic. This system of equations first appeared in the work of Jean le Rond d'Alembert (d'Alembert 1752). Later, Leonhard Euler connected this system to the analytic functions (Euler 1797). Cauchy (1814) then used these equations to construct his theory of functions. Riemann's dissertation (Riemann 1851) on the theory of functions appeared in 1851.

随便看

 

英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2024 encnc.com All Rights Reserved
更新时间:2025/6/20 20:57:57