计盒维数 Minkowski–Bouligand dimension
(重定向自Box dimension)
在分形几何中, 计盒维数也称为盒维数、闵可夫斯基维数,是一种测量距离空间(X, d)(特别是豪斯多夫空间)比如欧氏空间 R 中分形维数的计算方法。
要计算分形 S 的维数,你可以想象一下把这个分形放在一个均匀分割的网格上,数一数最小需要几个格子来覆盖这个分形。通过对网格的逐步精化,查看所需覆盖数目的变化,从而计算出计盒维数。
假设当格子的边长是 ε 时,总共把空间分成 N 个格子,那幺计盒维数就是:
当极限不收敛时,我们必须指出顶盒维数或底盒维数,或者说,计盒维数仅在和顶盒维数与底盒维数相等时才是有定义的。顶盒维数也称为能量维数、科莫格洛夫维数、科莫格洛夫容积,或者闵可夫斯基上界维数,类似的可定义闵可夫斯基下界维数。