网站首页  英汉词典

请输入您要查询的英文单词:

 

单词 Yoneda lemma
释义

Yoneda lemma

中文百科

米田引理

在范畴论中,米田引理断言一个对象X的性质由它所表示的函子\mathrm{Hom}(X,-)\mathrm{Hom}(-,X)决定。此引理得名于日本数学家暨计算机科学家米田信夫。

\mathcal{C}为一范畴,定义两个函子范畴如下:

\mathcal{C}^\wedge := \mathrm{Fct}(\mathcal{C}, \mathbf{Set})
\mathcal{C}^\vee := \mathrm{Fct}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set})

并定义两个函子:

h_\mathcal{C}(X) = h_X := \mathrm{Hom}_{\mathcal{C}}(-,X)
k_\mathcal{C}(X) = k_X := \mathrm{Hom}_{\mathcal{C}}(X,-)

其中h_\mathcal{C} : C \to \mathcal{C}^\wedgek_\mathcal{C}: C \to \mathcal{C}^\vee

米田引理的抽象陈述如下:

米田引理。有自然的同构

\forall X \in \mathcal{C}, A \in \mathcal{C}^\wedge \quad \mathrm{Hom}_{\mathcal{C}^\wedge}(h_X, A) \simeq A (X)
\forall X \in \mathcal{C}, B \in \mathcal{C}^\vee \quad \mathrm{Hom}_{\mathcal{C}^\vee}(k_X, B) \simeq B (X)

这两个同构对所有变元A, B, X都满足函子性。

对任一对象Y \in \mathcal{C},在上述同构中分别取A = h_Y, B = k_Y,便得到米田引理最常见的形式:

推论。函子h_\mathcal{C} : C \to \mathcal{C}^\wedgek_\mathcal{C}: C \to \mathcal{C}^\vee是完全忠实的。

英语百科

Yoneda lemma 米田引理

In mathematics, specifically in category theory, the Yoneda lemma is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a particular kind of category with just one object). It allows the embedding of any category into a category of functors (contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.

随便看

 

英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2024 encnc.com All Rights Reserved
更新时间:2025/6/19 4:30:13