魏尔斯特拉斯逼近定理 Stone–Weierstrass theorem
(重定向自Weierstrass Approximation Theorem)
魏尔斯特拉斯逼近定理有两个:
- 闭区间上的连续函数可用多项式级数一致逼近。
- 闭区间上周期为
的连续函数可用三角函数级数一致逼近。
单词 | Weierstrass Approximation Theorem |
释义 |
Weierstrass Approximation Theorem
中文百科
魏尔斯特拉斯逼近定理 Stone–Weierstrass theorem(重定向自Weierstrass Approximation Theorem)
魏尔斯特拉斯逼近定理有两个:
英语百科
Stone–Weierstrass theorem 魏尔斯特拉斯逼近定理(重定向自Weierstrass Approximation Theorem)
In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on a closed interval [a, b] can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are among the simplest functions, and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation. The original version of this result was established by Karl Weierstrass in 1885 using the Weierstrass transform. |
随便看 |
|
英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。