Wave function collapse 波函数塌缩
(重定向自Wavefunction collapse)
In quantum mechanics, wave function collapse is said to occur when a wave function—initially in a superposition of several eigenstates—appears to reduce to a single eigenstate (by "observation"). It is the essence of measurement in quantum mechanics and connects the wave function with classical observables like position and momentum. Collapse is one of two processes by which quantum systems evolve in time; the other is continuous evolution via the Schrödinger equation. However, in this role, collapse is merely a black box for thermodynamically irreversible interaction with a classical environment. Calculations of quantum decoherence predict apparent wave function collapse when a superposition forms between the quantum system's states and the environment's states. Significantly, the combined wave function of the system and environment continue to obey the Schrödinger equation.