DNA gyrase
DNA gyrase, also known as topoisomerase II or simply as gyrase, is an enzyme that relieves strain while double-stranded DNA is being unwound by helicase. This causes negative supercoiling of the DNA. The gyrase supercoils (or relaxes positive supercoils) into DNA by looping the template so as to form a crossing, then cutting one of the double helices and passing the other through it before releasing the break, changing the linking number by two in each enzymatic step. This process occurs in prokaryotes (in particular, in bacteria), whose single circular DNA is cut by DNA gyrase and the two ends are then twisted around each other to form supercoils. Gyrase has been found in the apicoplast of the malarial parasite Plasmodium falciparum, a unicellular eukaryote. Bacterial DNA gyrase is the target of many antibiotics, including nalidixic acid, novobiocin, and ciprofloxacin.