Besov space
In mathematics, the Besov space (named after Oleg Vladimirovich Besov) is a complete quasinormed space which is a Banach space when 1 ≤ p, q ≤ ∞. It, as well as the similarly defined Triebel–Lizorkin space, serve to generalize more elementary function spaces and are effective at measuring regularity properties of functions.