Tensor product

In mathematics, the tensor product, denoted by ⊗, may be applied in different contexts to vectors, matrices, tensors, vector spaces, algebras, topological vector spaces, and modules, among many other structures or objects. In each case the significance of the symbol is the same: the freest bilinear operation. In some contexts, this product is also referred to as outer product. The general concept of a "tensor product" is captured by monoidal categories; that is, the class of all things that have a tensor product is a monoidal category. The variant of ⊗ is used in control theory.