T1空间
在拓扑学和相关的数学分支中,T1 空间和 R0 空间是特定种类的拓扑空间。T1 和 R0 性质是分离公理的个例。
设 X 是拓扑空间并设 x 和 y 是 X 中的点。我们称 x 和 y 可以被“分离”如果它们每个都位于不包含另一个点的一个开集中。
T1 空间也叫做可及空间(accessible space)或Fréchet 空间,而 R0 空间也叫做对称空间。(术语“Fréchet空间”在泛函分析中有完全不同的意义。为此偏好术语“T1 空间”。还有作为某种类型的串行空间的Fréchet-Urysohn空间的概念。术语“对称空间”也有其他意义。)