空间对称群 Symmetry group

一个对象(如一维、二维或三维中的图像或信号)的对称群是指在复合函数运算下不变的所有等距同构所构成的群。其为所考虑之空间的等距同构群中的一个子群。
(若没有另外注明,则本文只考虑在欧几里得空间内的对称群,但此一概念亦可以被应用在更广义的用途上,详见下文。)
「对象」可以是几何形状、图像及模式,如壁纸图样。其定义能够以详述图像或模式的方式,如将位置附上一组颜色的值的函数,来使其更为精确。对如三维物体的对称,可能亦会想要考量其物理上可能的组合。空间中等距同构的群可以产生一个作用于此群本身对象上的群作用。
对称群有时亦称为全对称群,以强调其会产生一个图像不会改变的反转定位之等距同构(如镜射、滑移镜射和不纯旋转)。会保留其定位之同距同构(如平移、旋转和此两者的组合)的子群则称为其纯对称群。一对象的纯对称群若等同于其全对称群,则称此对象为对掌的(也因此不存在使其不变的反转定位之等距同构。)