Superellipsoid
![Superellipsoid collection with exponent parameters, created using POV-Ray. Here, e = 2/r, and n = 2/t (equivalently, r = 2/e and t = 2/n).[1] The cube, cylinder, sphere, Steinmetz solid, bicone and regular octahedron can all be seen as special cases.](/uploads/202502/14/Superellipsoid_collection5211.png)
In mathematics, a super-ellipsoid or superellipsoid is a solid whose horizontal sections are super-ellipses (Lamé curves) with the same exponent r, and whose vertical sections through the center are super-ellipses with the same exponent t.
Super-ellipsoids as computer graphics primitives were popularized by Alan H. Barr (who used the name "superquadrics" to refer to both superellipsoids and supertoroids). However, while some super-ellipsoids are superquadrics, neither family is contained in the other.