释义 |
sum theorem for dimension
- 次元cì yuán
dimension
- 量纲liàng gāng
dimension
- 亥姆霍兹定理hài mǔ huò zī dìng lǐ
helmholtz theorem
- 并集bìng jí
sum
- 全额quán é
sum
- 立体感lì tǐ gǎn
third dimension
- 毕氏定理bì shì dìng lǐ
Pythagorean theorem
- 费马定理fèi mǎ dìng lǐ
fermat theorem
- 瑞利定理ruì lì dìng lǐ
Rayleigh theorem
- 规模guī mó
dimensions, scale, scope, size
- 慎重考虑shèn zhòng kǎo lǜ
do sb's sums
- 二项式定理èr xiàng shì dìng lǐ
binomial theorem
- 介值定理jiè zhí dìng lǐ
intermediate value theorem
- 刘维定理liú wéi dìng lǐ
Liouville's theorem
- 余额yú é
balance; remaining sum
- 业绩标准yè jì biāo zhǔn
performance dimension; performance criteria
- 毕达哥拉斯定理bì dá gē lā sī dìng lǐ
pythagoras theorem
- 平均值定理píng jun1 zhí dìng lǐ
theorem of the mean
- 付款fù kuǎn
pay a sum of money
- 定理dìng lǐ
theorem
- 费马最后定理fèi mǎ zuì hòu dìng lǐ
Fermat's last theorem
- 逻辑和luó jí hé
logical sum; logic sum; union
- 傅里叶积分公式fù lǐ yè jī fèn gōng shì
integral theorem of fourier
- 总之zǒng zhī
anyhow, anyway, in a word, in conclusion, on all accounts, to sum up
- 法则fǎ zé
principle, theorem
|