奇异值分解
奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。奇异值分解在某些方面与对称矩阵或厄米矩阵基于特征矢量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征矢量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。
单词 | Singular value decomposition |
释义 |
Singular value decomposition
中文百科
奇异值分解奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。奇异值分解在某些方面与对称矩阵或厄米矩阵基于特征矢量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征矢量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。
英语百科
Singular value decomposition 奇异值分解![]() ![]() In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix. It is the generalization of the eigendecomposition of a positive semidefinite normal matrix (for example, a symmetric matrix with positive eigenvalues) to any |
随便看 |
|
英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。