Simplicial homology


In algebraic topology, simplicial homology formalizes the idea of the number of holes of a given dimension in a simplicial complex. This generalizes the number of connected components (the case of dimension 0).
Simplicial homology arose as a way to study topological spaces whose building blocks are n-simplices, the n-dimensional analogs of triangles. This includes a point (0-dimensional simplex), a line segment (1-dimensional simplex), a triangle (2-dimensional simplex) and a tetrahedron (3-dimensional simplex). By definition, such a space is homeomorphic to a simplicial complex (more precisely, the geometric realization of an abstract simplicial complex). Such a homeomorphism is referred to as a triangulation of the given space. Many topological spaces of interest can be triangulated, including every smooth manifold, by Cairns and Whitehead.