鞍点 Saddle point



一个不是局部极值点的驻点称为鞍点。
广义而说,一个光滑函数(曲线,曲面,或超曲面)的鞍点邻域的曲线,曲面,或超曲面,都位于这点的切线的不同边。
参考右图,鞍点这词语来自于不定二次型的二维图形,像个马鞍:在x-轴方向往上曲,在y-轴方向往下曲。
检验二元实函数F(x,y)的驻点是不是鞍点的一个简单的方法,是计算函数在这个点的黑塞矩阵:如果黑塞矩阵的行列式小于0,则该点就是鞍点。例如,函数在驻点
的黑塞矩阵是:
我们可以看到此矩阵有两个特征值2,-2。它的行列式小于0,因此,这个点是鞍点。然而,这个条件只是充分条件,例如,对于函数点
是一个鞍点,但函数在原点的黑塞矩阵是零矩阵,并不小于0。