Total ring of fractions
(重定向自Ring of fractions)
In abstract algebra, the total quotient ring, or total ring of fractions, is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings R that may have zero divisors. The construction embeds R in a larger ring, giving every non-zero-divisor of R an inverse in the larger ring. Nothing more in A can be given an inverse, if one wants the homomorphism from A to the new ring to be injective.