拟群
在数学中,特别是抽象代数里,拟群是一种类似于群的代数结构。拟群与群的相像之处是也能够进行除法运算,但拟群中并没有群所拥有的结合律。有单比特的拟群称作幺拟群或者圈(loop)。
拟群的正规定义有两种,分别带有一种和三种二元运算。首先介绍第一种定义:
一个拟群 (Q, *) 是一个集合 Q 与一个二元运算 * 的结合(即一个原群),满足对 Q 中的任意元素 a 和 b,都存在唯一的 Q 中元素 x 和 y,使得:
这两个唯一的元素被记作:x = a \ b 和 y = b / a。其中“\” 和 “/”分别表示被二元运算所定义的“左除法”和“右除法”。拟群的公理化需要用到存在量词,因此也就需要创建在一阶逻辑之上。