网站首页  英汉词典

请输入您要查询的英文单词:

 

单词 Principal Components Analysis
释义

Principal Components Analysis

英语例句库

Firstly,the paper utilizes kernel principal component analysis method to realize reduce the dimension of the input vectors and orthogonalize the components of the input vectors.

首先利用核主元分析实现输入变量的降维和去相关,然后运用小波神经网络建立预测模型。

中文百科

主成分分析 Principal component analysis

(重定向自Principal Components Analysis)
主成分分析实例:一个平均值为(1, 3)、标准差在(0.878, 0.478)方向上为3、在其正交方向为1的高斯分布。这里以黑色显示的两个矢量是这个分布的共变异数矩阵的特征矢量,其长度按对应的特征值之平方根为比例,并且移动到以原分布的平均值为原点。
ACP de una distribución normal multivariante centrada en (1,3) con desviación estándar 3 en la dirección aproximada (0,866, 0,5) y desviación estándar 1 en la dirección perpendicular a la anterior. Los vectores muestran los autovectores de la matriz de correlación escalados mediante la raíz cuadrada del correspondiente autovalor, y desplazados para que su origen coincidan con la media estadística.
A principal components analysis scatterplot of Y-STR haplotypes calculated from repeat-count values for 37 Y-chromosomal STR markers from 354 individuals.  PCA has successfully found linear combinations of the different markers, that separate out different clusters corresponding to different lines of individuals' Y-chromosomal genetic descent.
 Linear PCA versus nonlinear Principal Manifolds[41] for visualization of breast cancer microarray data: a) Configuration of nodes and 2D Principal Surface in the 3D PCA linear manifold. The dataset is curved and cannot be mapped adequately on a 2D principal plane; b) The distribution in the internal 2D non-linear principal surface coordinates (ELMap2D) together with an estimation of the density of points; c) The same as b), but for the linear 2D PCA manifold (PCA2D). The

在多元统计分析中,主成分分析英语:Principal components analysisPCA)是一种分析、简化数据集的技术。主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。由于主成分分析依赖所给数据,所以数据的准确性对分析结果影响很大。

主成分分析由卡尔·皮尔逊于1901年发明,用于分析数据及创建数理模型。其方法主要是通过对共变异数矩阵进行特征分解,以得出数据的主成分(即特征矢量)与它们的权值(即特征值)。PCA是最简单的以特征量分析多元统计分布的方法。其结果可以理解为对原数据中的方差做出解释:哪一个方向上的数据值对方差的影响最大?换而言之,PCA提供了一种降低数据维度的有效办法;如果分析者在原数据中除掉最小的特征值所对应的成分,那么所得的低维度数据必定是最优化的(也即,这样降低维度必定是失去消息最少的方法)。主成分分析在分析复杂数据时尤为有用,比如人脸识别。

英语百科

Principal component analysis 主成分分析

(重定向自Principal Components Analysis)
PCA of a multivariate Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly the (0.866, 0.5) direction and of 1 in the orthogonal direction. The vectors shown are the eigenvectors of the covariance matrix scaled by the square root of the corresponding eigenvalue, and shifted so their tails are at the mean.
A principal components analysis scatterplot of Y-STR haplotypes calculated from repeat-count values for 37 Y-chromosomal STR markers from 354 individuals.  PCA has successfully found linear combinations of the different markers, that separate out different clusters corresponding to different lines of individuals' Y-chromosomal genetic descent.
 Linear PCA versus nonlinear Principal Manifolds[41] for visualization of breast cancer microarray data: a) Configuration of nodes and 2D Principal Surface in the 3D PCA linear manifold. The dataset is curved and cannot be mapped adequately on a 2D principal plane; b) The distribution in the internal 2D non-linear principal surface coordinates (ELMap2D) together with an estimation of the density of points; c) The same as b), but for the linear 2D PCA manifold (PCA2D). The
主成分分析实例:一个平均值为(1, 3)、标准差在(0.878, 0.478)方向上为3、在其正交方向为1的高斯分布。这里以黑色显示的两个矢量是这个分布的共变异数矩阵的特征矢量,其长度按对应的特征值之平方根为比例,并且移动到以原分布的平均值为原点。

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. The number of principal components is less than or equal to the number of original variables. This transformation is defined in such a way that the first principal component has the largest possible variance (that is, accounts for as much of the variability in the data as possible), and each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the preceding components. The resulting vectors are an uncorrelated orthogonal basis set. The principal components are orthogonal because they are the eigenvectors of the covariance matrix, which is symmetric. PCA is sensitive to the relative scaling of the original variables.

随便看

 

英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2024 encnc.com All Rights Reserved
更新时间:2025/6/17 14:30:10