Perceptron

![The Mark I Perceptron machine was the first implementation of the perceptron algorithm. The machine was connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400-pixel image. The main visible feature is a patchboard that allowed experimentation with different combinations of input features. To the right of that are arrays of potentiometers that implemented the adaptive weights.[2]:213](/uploads/202502/02/Mark_I_perceptron5856.jpeg)


In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers: functions that can decide whether an input (represented by a vector of numbers) belongs to one class or another. It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector. The algorithm allows for online learning, in that it processes elements in the training set one at a time.