佩尔方程 Pell's equation


若一个丢番图方程具有以下的形式:
且为正整数,则称此二元二次不定方程为佩尔方程(英文:Pell's equation德文:Pellsche Gleichung)。
若是完全平方数,则这个方程序只有平凡解
(实际上对任意的
,
都是解)。对于其余情况,拉格朗日证明了佩尔方程总有非平凡解。而这些解可由
的连分数求出。
单词 | Pell equation |
释义 |
Pell equation
中文百科
佩尔方程 Pell's equation(重定向自Pell equation)
![]() ![]() 若一个丢番图方程具有以下的形式: 且 若
英语百科
Pell's equation 佩尔方程(重定向自Pell equation)
![]() ![]() ![]() ![]() Pell's equation (also called the Pell–Fermat equation) is any Diophantine equation of the form where n is a given positive nonsquare integer and integer solutions are sought for x and y. In Cartesian coordinates, the equation has the form of a hyperbola; solutions occur wherever the curve passes through a point whose x and y coordinates are both integers, such as the trivial solution with x = 1 and y = 0. Joseph Louis Lagrange proved that, as long as n is not a perfect square, Pell's equation has infinitely many distinct integer solutions. These solutions may be used to accurately approximate the square root of n by rational numbers of the form x/y. |
随便看 |
|
英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。