网站首页  英汉词典

请输入您要查询的英文单词:

 

单词 Overfitting
释义

Overfitting

中文百科

过适

在统计学中,过适英语:overfitting,或称过度拟合)现象是指在调适一个统计模型时,使用过多参数。对比于可取得的数据总量来说,一个荒谬的模型只要足够复杂,是可以完美地适应数据。过适一般可以识为违反奥卡姆剃刀原则。当可选择的参数的自由度超过数据所包含信息内容时,这会导致最后(调适后)模型使用任意的参数,这会减少或破坏模型一般化的能力更甚于适应数据。过适的可能性不只取决于参数个数和数据,也跟模型架构与数据的一致性有关。此外对比于数据中预期的杂讯或错误数量,跟模型错误的数量也有关。

过适现象的观念对机器学习也是很重要的。通常一个学习算法是借由训练范例来训练的。亦即预期结果的范例是可知的。而学习者则被认为须达到可以预测出其它范例的正确的结果,因此,应适用于一般化的情况而非只是训练时所使用的现有数据(根据它的归纳偏向)。然而,学习者却会去适应训练数据中太特化但又随机的特征,特别是在当学习过程太久或范例太少时。在过适的过程中,当预测训练范例结果的表现增加时,应用在未知数据的表现则变更差。

英语百科

Overfitting 过适

Noisy (roughly linear) data is fitted to both linear and polynomial functions. Although the polynomial function is a perfect fit, the linear version can be expected to generalize better. In other words, if the two functions were used to extrapolate the data beyond the fit data, the linear function would make better predictions.
Overfitting/overtraining in supervised learning (e.g., neural network). Training error is shown in blue, validation error in red, both as a function of the number of training cycles. If the validation error increases(positive slope) while the training error steadily decreases(negative slope) then a situation of overfitting may have occurred. The best predictive and fitted model would be where the validation error has its global minimum.

In statistics and machine learning, one of the most common tasks is to fit a "model" to a set of training data, so as to be able to make reliable predictions on general untrained data. In overfitting, a statistical model describes random error or noise instead of the underlying relationship. Overfitting occurs when a model is excessively complex, such as having too many parameters relative to the number of observations. A model that has been overfit has poor predictive performance, as it overreacts to minor fluctuations in the training data.

随便看

 

英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2024 encnc.com All Rights Reserved
更新时间:2025/6/19 18:17:14