Operator product expansion
In quantum field theory, the operator product expansion (OPE) is used as an axiom to define the product of fields as a sum over the same fields. As an axiom, it offers a non-perturbative approach to quantum field theory. One example is the vertex operator algebra, which has been successfully used to construct conformal field theory. Whether this result can be extended to QFT in general, thus resolving many of the difficulties of a perturbative approach, remains an open research question.