Millennium Prize Problems 千禧年大奖难题
(重定向自Millennium problem)
The Millennium Prize Problems are seven problems in mathematics that were stated by the Clay Mathematics Institute in 2000. The problems are Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Poincaré conjecture, Riemann hypothesis, and Yang–Mills existence and mass gap. A correct solution to any of the problems results in a US $1M prize (sometimes called a Millennium Prize) being awarded by the institute. The only solved problem is the Poincaré conjecture, which was solved by Grigori Perelman in 2003.