Maximum flow problem
(重定向自Maximal flow)




In optimization theory, maximum flow problems involve finding a feasible flow through a single-source, single-sink flow network that is maximum.
The maximum flow problem can be seen as a special case of more complex network flow problems, such as the circulation problem. The maximum value of an s-t flow (i.e., flow from source s to sink t) is equal to the minimum capacity of an s-t cut (i.e., cut severing s from t) in the network, as stated in the max-flow min-cut theorem.