Permittivity

![A dielectric permittivity spectrum over a wide range of frequencies. ε′ and ε″ denote the real and the imaginary part of the permittivity, respectively. Various processes are labeled on the image: ionic and dipolar relaxation, and atomic and electronic resonances at higher energies.[4]](/uploads/202501/25/Dielectric_responses.svg5447.png)
In electromagnetism, permittivity or absolute permittivity is the measure of resistance that is encountered when forming an electric field in a medium. In other words, permittivity is a measure of how an electric field affects, and is affected by, a dielectric medium. The permittivity of a medium describes how much electric field (more correctly, flux) is 'generated' per unit charge in that medium. More electric flux exists in a medium with a low permittivity (per unit charge) because of polarization effects. Permittivity is directly related to electric susceptibility, which is a measure of how easily a dielectric polarizes in response to an electric field. Thus, permittivity relates to a material's ability to resist an electric field (while, unfortunately, the word stem "permit" suggests the inverse quantity).