Locally simply connected space
(重定向自Locally simply connected)

In mathematics, a locally simply connected space is a topological space that admits a basis of simply connected sets. Every locally simply connected space is also locally path-connected and locally connected.
The circle is an example of a locally simply connected space which is not simply connected. The Hawaiian earring is a space which is neither locally simply connected nor simply connected. The cone on the Hawaiian earring is contractible and therefore simply connected, but still not locally simply connected.