网站首页  英汉词典

请输入您要查询的英文单词:

 

单词 Laplace Transformation
释义

Laplace Transformation

中文百科

拉普拉斯变换 Laplace transform

(重定向自Laplace Transformation)

拉普拉斯变换英语:Laplace transform)是应用数学中常用的一种积分变换,又名拉氏转换,其符号为 \displaystyle\mathcal{L} \left\{f(t)\right\}。拉氏变换是一个线性变换,可将一个有引数实数tt ≥ 0)的函数转换为一个引数为复数s的函数:

拉氏变换在大部份的应用中都是对射的,最常见的f(t)和F(s)组合常印制成表,方便查阅。拉普拉斯变换得名自法国天文学家暨数学家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在机率论的研究中首先引入了拉氏变换。

拉氏变换和傅里叶变换有关,不过傅里叶变换将一个函数或是信号表示为许多弦波的叠加,而拉氏变换则是将一个函数表示为许多矩的叠加。拉氏变换常用来求解微分方程及积分方程。在物理及工程上常用来分析线性非时变系统,可用来分析电子电路、谐振子、光学仪器及机械设备。在这些分析中,拉氏变换可以作时域和频域之间的转换,在时域中输入和输出都是时间的函数,在频域中输入和输出则是复变角频率的函数,单位是弧度每秒。

英语百科

Laplace transform 拉普拉斯变换

(重定向自Laplace Transformation)
s-domain equivalent circuits

In mathematics the Laplace transform is an integral transform named after its discoverer Pierre-Simon Laplace (/ləˈplɑːs/). It takes a function of a positive real variable t (often time) to a function of a complex variable s (frequency).

The Laplace transform is very similar to the Fourier transform. While the Fourier transform of a function is a complex function of a real variable (frequency), the Laplace transform of a function is a complex function of a complex variable. Laplace transforms are usually restricted to functions of t with t > 0. A consequence of this restriction is that the Laplace transform of a function is a holomorphic function of the variable s. Unlike the Fourier transform, the Laplace transform of a distribution is generally a well-behaved function. Also techniques of complex variables can be used directly to study Laplace transforms. As a holomorphic function, the Laplace transform has a power series representation. This power series expresses a function as a linear superposition of moments of the function. This perspective has applications in probability theory.

随便看

 

英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2024 encnc.com All Rights Reserved
更新时间:2025/6/19 21:49:36