Jackknife resampling
(重定向自Jackknife method)
In statistics, the jackknife is a resampling technique especially useful for variance and bias estimation. The jackknife predates other common resampling methods such as the bootstrap. The jackknife estimator of a parameter is found by systematically leaving out each observation from a dataset and calculating the estimate and then finding the average of these calculations. Given a sample of size , the jackknife estimate is found by aggregating the estimates of each
estimate in the sample.