表示论 Representation theory
表示论是数学中抽象代数的一支。旨在将抽象代数结构中的元素「表示」成矢量空间上的线性变换,并研究这些代数结构上的模,借以研究结构的性质。略言之,表示论将一代数对象表作较具体的矩阵,并使得原结构中的代数运算对应到矩阵加法和矩阵乘法。此法可施于群、结合代数及李代数等多种代数结构;其中肇源最早,用途也最广的是群表示论。设为群,其在域
(常取复数域
)表示是一
-矢量空间
及映至一般线性群之群同态
假设有限维,则上述同态即是将
的元素映成可逆矩阵,并使得群运算对应到矩阵乘法。
表示论的妙用在于能将抽象代数问题转为较容易解决的线性代数问题。此外,群还可以表示在无穷维空间上;例如,若考虑无穷维希尔伯特空间上的表示,并要求一些连续性条件,此时表示论就牵涉到一些泛函分析的课题,数学分析的方法就可以用于解决群论的问题。表示论在自然科学中也有应用。对称性的问题离不开群,而群的研究又有赖于其表示,最明显的例子便是李群及李代数表示论在量子力学中的关键角色。