Dimension (vector space)
In mathematics, the dimension of a vector space V is the cardinality (i.e. the number of vectors) of a basis of V over its base field.
For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is finite-dimensional if the dimension of V is finite, and infinite-dimensional if its dimension is infinite.