网站首页  英汉词典

请输入您要查询的英文单词:

 

单词 Homogeneous linear equation
释义

Homogeneous linear equation

中文百科

线性方程组 System of linear equations

(重定向自Homogeneous linear equation)
三变量的线性系统确定了一组平面。交点就是解。
方程组的解是所有直线的公共点
La intersección de dos planos que no son paralelos coincidentes es una recta.

线性方程组是数学方程组的一种,它符合以下的形式:

 \begin{cases}a_{1,1}x_{1} + a_{1,2}x_{2} + \cdots + a_{1,n}x_{n}=  b_{1} \\
                     a_{2,1}x_{1} + a_{2,2}x_{2} + \cdots + a_{2,n}x_{n}=  b_{2} \\
                     \vdots \quad \quad \quad \vdots \\
                     a_{m,1}x_{1} + a_{m,2}x_{2} + \cdots + a_{m,n}x_{n}=  b_{m} \end{cases}

其中的a_{1,1}, \, a_{1,2}以及b_{1}, \, b_{2}等等是已知的常数,而x_{1}, \, x_{2}等等则是要求的未知数。

如果用线性代数中的概念来表达,则线性方程组可以写成:

\mathbf{A} \mathbf{x} = \mathbf{b}

这里的Am×n 矩阵,x是含有n个元素列矢量,b是含有m 个元素列矢量。


A=
\begin{bmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{bmatrix},\quad
\bold{x}=
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix},\quad
\bold{b}=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{bmatrix}

这是线性方程组的另一种记录方法。在已知矩阵A和矢量\mathbf{b}的情况求得未知矢量\mathbf{x}是线性代数的基本问题之一。

英语百科

System of linear equations 线性方程组

(重定向自Homogeneous linear equation)
A linear system in three variables determines a collection of planes. The intersection point is the solution.
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3).
The solution set for two equations in three variables is usually a line.

In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same set of variables. For example,

is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of numbers to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by

随便看

 

英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2024 encnc.com All Rights Reserved
更新时间:2025/6/18 15:49:08