希尔伯特零点定理 Hilbert's Nullstellensatz
希尔伯特零点定理(Hilbert's Nullstellensatz)确立了几何和代数之间的基本关系。数学中一大重要分支——代数几何——正是创建在这一关联的基础之上的。零点定理联系了代数集与(代数闭域上的)多项式环中的理想。大卫·希尔伯特最早发现了这一关联,并证明了零点定理及其它相关的重要定理(如希尔伯特基定理)。
单词 | Hilbert Nullstellensatz |
释义 |
Hilbert Nullstellensatz
中文百科
希尔伯特零点定理 Hilbert's Nullstellensatz(重定向自Hilbert Nullstellensatz)
希尔伯特零点定理(Hilbert's Nullstellensatz)确立了几何和代数之间的基本关系。数学中一大重要分支——代数几何——正是创建在这一关联的基础之上的。零点定理联系了代数集与(代数闭域上的)多项式环中的理想。大卫·希尔伯特最早发现了这一关联,并证明了零点定理及其它相关的重要定理(如希尔伯特基定理)。
英语百科
Hilbert's Nullstellensatz 希尔伯特零点定理(重定向自Hilbert Nullstellensatz)
Hilbert's Nullstellensatz (German for "theorem of zeros," or more literally, "zero-locus-theorem" – see Satz) is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry, an important branch of mathematics. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert who proved the Nullstellensatz and several other important related theorems named after him (like Hilbert's basis theorem). |
随便看 |
|
英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。