Global element
In category theory, a global element of an object A from a category is a morphism
where 1 is a terminal object of the category. Roughly speaking, global elements are a generalization of the notion of “elements” from the category of sets, and they can be used to import set-theoretic concepts into category theory. However, unlike a set, an object of a general category need not be determined by its global elements (not even up to isomorphism). For example the terminal object of the category Grph of graph homomorphisms has one vertex and one edge, a self-loop, whence the global elements of a graph are its self-loops, conveying no information either about other kinds of edges, or about vertices having no self-loop, or about whether two self-loops share a vertex.