网站首页  英汉词典

请输入您要查询的英文单词:

 

单词 Gaussian quadrature
释义

Gaussian quadrature

中文百科

高斯求积

以德国数学家卡尔·弗里德里希·高斯所命名的一种数值积分中的求积规则。当我们要求解某个函数的积分\int_{-1}^{1}f(x) dx ,其数值解可以由\sum_{i=1}^n w_i f(x_i)近似,其中w_i, i = 1 ... n为权重。高斯求积仅仅当函数f(x)可以由在区间[-1, 1]的多项式近似时才能获得准确的近似解,这种方法并不适合函数具有奇异点的情况。于是乎,我们可以把函数f(x)写作f(x) = W(x)g(x),其中g(x)是近似多项式,W(x)是已知的权重函数,这样我们就有


\int_{-1}^1 f(x) dx = \int_{-1}^1 W(x)g(x)dx \approx \sum_{i=1}^n w_i' g(x_i)

常用的权重函数有


W(x) = (1 - x^2)^{-1/2}
(高斯切比雪夫)

以及


W(x) = e^{-x^2}
(高斯埃米特)。
英语百科

Gaussian quadrature 高斯求积

Comparison between 2-point Gaussian and trapezoidal quadrature. 

The blue line is the polynomial , whose integral in [-1, 1] is 2/3. The trapezoidal rule returns the integral of the orange dashed line, equal to . The 2-point Gaussian quadrature rule returns the integral of the black dashed curve, equal to . Such a result is exact since the green region has the same area as the red regions.
Graphs of Legendre polynomials (up to n = 5)

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the points xi and weights wi for i = 1, ..., n. The domain of integration for such a rule is conventionally taken as [−1, 1], so the rule is stated as

随便看

 

英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2024 encnc.com All Rights Reserved
更新时间:2025/6/22 0:18:24