Magnetic flux quantum
The magnetic flux, represented by the symbol Φ, threading some contour or loop is defined as the magnetic field B multiplied by the loop area S, i.e. Φ = B · S. Obviously, both B and S can be arbitrary and so is Φ. However, if one deals with the superconducting loop or a hole in a bulk superconductor, it turns out that the magnetic flux threading such a hole/loop is quantized. The (superconducting) magnetic flux quantum Φ0 = h/(2e) ≈ 833758(46)×10 Wb 2.067 is a combination of fundamental physical constants: the Planck constant h and the electron charge e. Its value is, therefore, the same for any superconductor. The phenomenon of flux quantization was discovered experimentally by B. S. Deaver and W. M. Fairbank and, independently, by R. Doll and M. Näbauer, in 1961. The quantization of magnetic flux is closely related to the Little–Parks effect, but was predicted earlier by Fritz London in 1948 using a phenomenological model.