And it turns out, history created a Eulerian path of its own.
事实证明,历史创造了自己的欧拉路径。
单词 | Eulerian path |
释义 |
Eulerian path
原声例句
TED-Ed(视频版) And it turns out, history created a Eulerian path of its own. 事实证明,历史创造了自己的欧拉路径。 TED-Ed(视频版) A Eulerian path that visits each edge only once is only possible in one of two scenarios. 只访问每条边一次的欧拉路径只可能出现在两种情况之一中。 TED-Ed(视频版) We just need to figure out how to travel what mathematicians call an Eulerian path, which traces every edge exactly once. 我们只需要弄清楚如何走数学家所说的欧拉路径,它恰好跟踪每条边一次。 TED-Ed(视频版) Then, the Eulerian path will start and stop in the same location, which also makes it something called a Eulerian circuit. 然后, 欧拉路径将在同一位置开始和停止,这也使它成为欧拉回路。 TED-Ed(视频版) Interestingly enough, any connected network that has exactly 2 nodes with an odd number of edges will also contain an Eulerian path. 有趣的是,任何恰好有 2 个节点且边数为奇数的连通网络也将包含欧拉路径。
中文百科
一笔画问题![]() ![]() 一笔画问题是图论中一个著名的问题。一笔画问题起源于柯尼斯堡七桥问题。数学家欧拉在他1736年发表的论文《柯尼斯堡的七桥》中不仅解决了七桥问题,也提出了一笔画定理,顺带解决了一笔画问题。一般认为,欧拉的研究是图论的开端。 与一笔画问题相对应的一个图论问题是哈密顿问题。
英语百科
Eulerian path 一笔画问题![]() ![]() In graph theory, an Eulerian trail (or Eulerian path) is a trail in a graph which visits every edge exactly once. Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this: |
随便看 |
|
英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。